
Timber Network Session Protocol:
A Trustless Incentivized Message Bridge-Encapsulating Router

Tomo Saigon, Timber Network

Abstract
We present the Timber Session Protocol, a comprehensive
standard protocol for the establishment of persistent
cross-chain communication sessions, characterized by
trustlessness and agnosticism to the underlying transport
protocol utilized for message bridging. The protocol
functions by establishing a trust-minimizing connection
through an incentivized message bridge, encapsulating a
designated route over the bridge. The session established by
the protocol is connection-oriented, bi-directional,
long-lasting, and designed to provide reliable guarantees for
quality of service, as well as protections against data
corruption during message transit.

The objective of the Timber Session Protocol is to offer a
general cross-chain communication solution, enabling
developers to interface with a standard contract API for
contract-to-contract messaging, by treating contracts on the
local chain as virtual contract interfaces to the remote
chain. The protocol delivers robust security through the
combination of the session protocol and the underlying
bridge facility.

1. Background
The proliferation of blockchains, many of which possess
distinct features, has driven up the value of interconnecting
these blockchains into a network to leverage these unique
capabilities. This growth has been accompanied by an
increase in cross-chain communication facilities, each with
its own set of distinctive features and advantages. With the
emergence of truly decentralized cross-chain messaging
protocols, such as Axelar, there arises the requirement for
standardization of their interfaces to facilitate the
development of cross-chain applications.

In response to this requirement, we propose the
establishment of a standard session protocol, layered on top
of general cross-chain messaging transport protocols. This
session protocol would provide application developers with
the capability to securely transmit payloads to smart
contracts on remote chains through interaction exclusively
with their local chain.

The exponential increase in the number of blockchains,
from a single instance in 2009 to thousands today, is
expected to continue in the future. The emergence of new

blockchains, each offering unique features and capabilities,
has created a highly competitive marketplace, where
bridging blockchains has become a crucial aspect to attract
users to move from existing blockchains to new ones.

Factors such as scalability, privacy, interoperability,
Turing-complete smart contracts, and governance are
among the key differentiators among the newer
blockchains. The development of cross-chain bridges has
progressed over the years, with early generations focusing
mainly on token transfers, while the later generations have
expanded their capabilities to support general message
passing and remote logic execution.

The mechanism of cross-chain message bridges operates
similarly to the communication of computers in sending
email. When a computer sends an email using an
application, it first creates a connection and establishes a
session with an email server, and the email content is
transmitted through multiple layers of abstraction and
protocols as described by the seven layer OSI model before
reaching its destination. The same holds true for messages
sent from an application on a blockchain to another
blockchain, which are processed through various
intermediate data formats and protocols before reaching
their final destination.

The lower-level networking protocols, such as TCP, are
utilized by both email and blockchains, which themselves
act as network protocols. Application developers on smart
contracts operating on blockchains only need to conform to
the standard interfaces for the blockchain and its virtual
machine, freeing them from the responsibility of managing
the blockchain protocol itself.

However, the current landscape lacks a standard for sending
cross-chain messages, with each message bridge offering its
own bespoke API. This imposes a challenge for smart
contract developers who aim to send messages to smart
contracts on different blockchains, as they must learn the
specific API of the message bridge they plan to use, such as
Axelar.

2. Assumptions
Assuming the existence of an application that leverages the
accounts, data, assets, and features of one blockchain in
conjunction with those of another, the need arises for a



means of copying and transporting arbitrary data between
blockchain protocols. The Timber Voting Protocol
describes an example of such an application. The second
assumption is that a message bridge, which may be
decentralized such as Axelar or centralized such as POA
Network's TokenBridge, will be available to facilitate this
transfer of data. It is further assumed that the use of such a
message bridge will require payment for service, but will
not necessitate obtaining permission from any third party. It
is sufficient that the existing message bridge operates on
payment using a widely available currency on the source
chain.

2. Session protocol
The proposed Timber session protocol offers a unified,
standardized interface for cross-chain communication. It
sits on top of any existing arbitrary cross-chain messaging
transport protocol, providing an extra layer of security,
authentication, and message ordering to the underlying
transport.

The session protocol uses a Berkley sockets-like interface,
making it easy for developers to use without having to
understand the intricacies of the underlying cross-chain
messaging transport protocol. By using the session
protocol, developers can send payloads to smart contracts
on remote chains with ease, interacting only with their local
chain, while also protecting against spoofing and denial of
service attacks, and providing authentication of data
integrity and reducing the trust requirements of the
underlying transport protocols.

The session protocol uses a message format that includes a
header field describing the rest of the message, sequence
numbers, connection hashes to protect against cross-session
replay attacks, a standard formatted signature, and
container for the raw message. The bidirectional nature of
the session protocol allows for response and control
messages to be sent back to the source. The protocol also
maintains internal state that can be verified externally,
providing an added layer of security and authenticity.

Thus, the proposed Timber session protocol provides a
simplified and standardized way for developers to take
advantage of cross-chain communication, without having to
navigate the complex landscape of different cross-chain
messaging bridges and protocols. The standardization of
the session protocol would allow application developers to
focus on writing cross-chain applications rather than the
low-level details of communication between chains. The
session protocol would hide the complexities of the
underlying messaging transport protocol, making it much
easier to write cross-chain applications securely.

3. Message ordering
Message bridges may not guarantee the order in which
messages are delivered, and assume that the messages
themselves are atomic and not interdependent. However,
applications may require messages to arrive in a specific
order for their logic to work correctly. As an illustration,
consider an account that holds 100 tokens and is instructed
to first double its token count and then subtract 100 tokens.
If the instructions are received in the wrong order, the
account may end up selling all of its tokens before doubling
the amount, rendering the latter operation useless.

To maintain the proper order of messages, the session
protocol will start with a randomly generated sequence
number that is synchronized with the remote chain. This
number will be confirmed and kept up-to-date on both sides
to ensure a consistent order of messages. In case of an
out-of-order delivery, the messages will be held in a queue
and processed only after all intermediate messages have
been delivered.

The session protocol will filter any incoming messages that
are not part of the established session, preventing a flood of
messages from affecting the state of the contract. Any such
messages will be thrown out with costs incurred by the
attacker.

4. Data integrity
In order to ensure consistency between both sides, each
new message is hashed with a previously saved hash,
forming a chain that can be verified. A forgery of a message
on the remote side would result in a forked chain hash,
which can be easily detected through external means. The
messages sent within the session protocol include a
signature from the sender, which verifies the source,
intended destination, and that both sides have a consistent
chain hash.

To prevent attempts of injecting messages with
unauthorized privileged instructions, the session protocol
includes a Merkle witness. This witness proves that the
signer is part of a Merkle tree of approved signers, which is
established when the session is first initiated.

5. Spoofing attacks
The session protocol includes measures to detect malicious
or unauthorized payloads which anyone can send to
contracts on a public blockchain. The protocol checks the
source of the message against the source defined during the
session initialization, as well as verifying that the message
contains the correct connection hash. This ensures that
messages are only accepted from the intended sender and



prevents spoofed messages from being processed. The
sender's signature is also verified to ensure data integrity.
The protocol filters out messages with incorrect or already
processed sequence numbers to provide an additional filter
against attack. Further data integrity is described in the
previous section.

6. Conclusion
In conclusion, the advancements in arbitrary message
bridges exemplified by Axelar have opened new doors for
developers to create innovative cross-chain applications.
The proposed Timber session protocol adds an extra layer
of security and reduces the trust requirements on these
message bridges, making it easier for developers to
securely build cross-chain applications. With its features
such as message ordering, protection against spoofing and
denial of service attacks, and data integrity authentication,
the session protocol enables developers to safely take
advantage of the combined features of multiple blockchains
in their applications.


